Thursday, December 18, 2014

Scientific Research Shows That Geothermal Heat Pumps Outperform VRF for Heating and Cooling

Annual Energy Use with Geothermal Heat Pumps is 44% Less than with a Variable Refrigerant Flow System

PRESS RELEASE from                                                                                                                                    
Geothermal Exchange Organization                 



Dec. 15 – Definitive scientific research has shown that a geothermal heat pump system offers far more efficiency in a large commercial building than a variable refrigerant flow system.

In January 2013, the Geothermal Exchange Organization (GEO)—with financial assistance from Southern Company—contracted a research team from Oklahoma State University and Oak Ridge National Laboratory to evaluate the relative performance of GHP vs. VRF heating and cooling systems installed at the American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE) International Headquarters Building in Atlanta, GA. (Editor’s Note: ASHRAE provided data for this study, but the organization does not endorse, recommend or certify any equipment or service used at ASHRAE International Headquarters).

When ASHRAE contracted a major renovation of their two-story, 31,000 sq. ft. building in 2008, they established a “living lab” to offer the chance to evaluate commercial building energy and sustainabilityperformance. In addition to improvements to its envelope, floor plan and sustainability features such as lighting, the building uses three separate heating, ventilation and air-conditioning (HVAC) systems:
·         A variable refrigerant flow (VRF) system for spaces on the first floor;
·         A geothermal heat pump (GHP) system, primarily for spaces on the second floor; and,
·         A dedicated outdoor air system (DOAS), which supplies fresh air to both floors.

The GEO research team studied the relative performance of the GHP and VRF systems, determininenergy consumption of each, and heating and cooling required by the building.

“There’s no question about it – GHPs trump VRF systems for efficiency and cost savings,” said GEO President and CEO Doug Dougherty. “Our study of heating and cooling performance at the ASHRAE Building proves that over a two-year period—with all variables accounted for—energy use by the geothermal system averaged 44% less than the VRF system.”

The first-floor VRF system includes three dedicated split systems and two multi-zone inverter driven heat-recovery units. The multi-zone heat-recovery units are connected to total of 22 fan coilunits (FCUs). Cooling capacity of the heat-recovery units is 28 tons, while the three dedicated systems have an additional 10 tons of capacity.  The second-floor GHP system includes 14individual water-to-air heat pumps (two ¾-ton units, six 2-ton units and six 3-ton units) connected to a ground loop heat exchanger consisting of twelve 400-ft. deep vertical boreholes, for total of 31.5 tons of cooling capacity.  

To facilitate efficiency studies like that performed by GEO, the ASHRAE Building renovation included an array of 1,600 sensors that monitor heating, ventilation and air-conditioning operations and conditions in each building zone.
Reports and Textbooks Have Shown Geothermal to Outperform VRF

Historical and current data from these sensors were available to the GEO research team, led by Dr. Jeff Spitler, Regents Professor of Mechanical Engineering at Oklahoma State University. His colleagues Included Dr. Xiaobing Liu, Staff Scientist at Oak Ridge National Laboratory and Laura Southard, Oklahoma State Mechanical Engineering graduate student. Southern Companyprovided the services of a power engineer to assist with onsite data measurements.  

The researchers concentrated on determining actual heating and cooling provided by the GHP and VRF systems; data analysis; and computation of measured and experimental metrics. They collected two yearsof operational data (July 12011 – June 30, 2013) for the HVAC systems. Data points included operating mode (off/heat/cool); zone temperature; and discharge air temperature for each individual FCU or heatpump. The researchers gathered data on ground loop water supply, return temperatures and flow rates for the geothermal system. 
The team also collected metered energy used by each system. For the GHP system, that included power for all 14 heat pumps, as well as the ground loop water circulation pumps. For the VRF system, power ismetered anrecorded only for the two heat-recovery units and the 22 FCUs connected to them. Power for the three dedicated split systems is metered through different panel that also includes power used for computer servers and other equipment. All such differences were taken into account for comparison.

“Though the energy consumed by each system is affected by several factors—including floor space; heating and cooling loads; control strategies; and operating conditions/efficiencies—the efficiency implications of each system are clear,” said Spitler. “Raw data show that the VRF system used twice as much energy as the geothermal system during the two-year study period.”

















           Total monthly energy use by each HVAC system


The areas served by the GHP and VRF systems have different heating and cooling loads, so the research team estimated the loads provided by each based upon individual unit air flowsThe graph below shows that when differences in floor space were normalized, energy use (kWh/sq. ft.) by the GHP system was an average 44% less than the VRF system.






















       Normalized monthly energy use per square foot


“During the two-year study period, the GHP system used 29% less energy in the summer and 63% less energy in the winter/shoulder seasons than the VRF system, while maintaining similar zone temperatures,” said Spitler.

“The underlying difference between the geothermal system and the air-source VRF system lays in the heat sink and sourceground vs. ambient air,” Spitler explained. “Though the control strategy for the VRF system resulted in longer runtimes compared to the geothermal system, it is clear that ground loop water supply temperatures were more favorable than ambient air temperatures for heat pump operation.This allows the geothermal equipment to operate at higher efficiencies.”

“Final Report, Performance of the HVAC Systems at the ASHRAE Headquarters Building” is available at the GEO website, here.  Two peer-reviewed articles by Spitler et al. describing the project and its results were published this year in the ASHRAE Journal (September and December2014 issues). The articles can be accessed online at the ASHRAE website, here, and here.  GEO will offer a free webinar about the research in early February 2015. (Editor’s Note: ASHRAE stipulates that anyone publishing links to their Journal articles include the following statement: “Use of the data published in ASHRAE Journal regarding performance of ASHRAE International Headquarters may not state nor imply that ASHRAE has endorsed, recommended, or certified any equipment or service used at ASHRAE International Headquarters.”).

GEO—the Geothermal Exchange Organization—is a non-profit 501(c)(6) trade association representing the interests of all businesses involved in the geothermal heat pump industry across the United States. GEO provides outreach for the industry to the public and government about the economic, national security, and environmental benefits of geothermal heat pump systems for residential, institutional and commercial applications. For more information, visit our website, here. Contact GEO by phone at (888) 255-4436, or via email here.


Ted Clutter
Communications and Outreach
GEO – The Geothermal Exchange Organization

Website   www.geoexchange.org

– Jay Egg is a geothermal consultant, writer, and the owner of EggGeothermal. He has co-authored two textbooks on geothermal HVAC systems published by McGraw-Hill Professional. He can be reached at jayegg.geo@gmail.com 

No comments:

Post a Comment